Mechanism that repairs brain after stroke discovered Brain

A stroke is caused by a blood clot blocking a blood vessel in the brain, which leads to an interruption of blood flow and therefore a shortage of oxygen. Many nerve cells die, resulting in motor, sensory and cognitive problems.

The researchers have shown that following an induced stroke in mice, support cells, so-called astrocytes, start to form nerve cells in the injured part of the brain. Using genetic methods to map the fate of the cells, the scientists could demonstrate that astrocytes in this area formed immature nerve cells, which then developed into mature nerve cells.

Stroke-Fighting Drug Offers Potential Traumatic Brain Injury Treatment

The only drug currently approved for treatment of stroke’s crippling effects shows promise, when administered as a nasal spray, to help heal similar damage in less severe forms of traumatic brain injury.

In the first examination of its kind, researchers Ye Xiong, Ph.D, Zhongwu Liu, Ph.D., and Michael Chopp, Ph.D., Scientific Director of the Henry Ford Neuroscience Institute, found in animal studies that the brain’s limited ability to repair itself after trauma can be enhanced when treated with the drug tPA, or tissue plasminogen activator.

Stem cells show promise for stroke in pilot study

Five patients received the treatment in a pilot study conducted by doctors at Imperial College Healthcare NHS Trust and scientists at Imperial College London.

The therapy was found to be safe, and all the patients showed improvements in clinical measures of disability.

The findings are published in the journal Stem Cells Translational Medicine. It is the first UK human trial of a stem cell treatment for acute stroke to be published.

Blocking key enzyme minimizes stroke injury

“If you inhibit Cdk5, then the vast majority of brain tissue stays alive without oxygen for up to one hour,” said Dr. James Bibb, Associate Professor of Psychiatry and Neurology and Neurotherapeutics at UT Southwestern and senior author of the study. “This result tells us that Cdk5 is a central player in nerve cell death.” More importantly, development of a Cdk5 inhibitor as an acute neuroprotective therapy has the potential to reduce stroke injury. “If we could block Cdk5 in patients who have just suffered a stroke, we may be able to reduce the number of patients in our hospitals who become disabled or die from stroke. Doing so would have a major impact on health care,” Dr. Bibb said.

Brain regions ‘tune’ activity to enable attention

Attention deficits in brain injury have been thought of as a loss of the resources needed to concentrate on a task. However, this study shows that temporal alignment of responses in different brain areas is also a very important mechanism that contributes to attention and could be impaired by brain injury.

Researchers find new pathway for neuron repair

The implications for human health -- although a long way down the road -- are important, Rolls said. For example, in the case of stroke, when a region of the brain suffers blood loss, dendrites on brain cells are damaged and can be repaired only if blood loss is very brief. Otherwise, it is thought those brain cells die. But if those cells are able to regenerate dendrites, and if scientists learn how dendrite regrowth happens, researchers may be able to promote this process.

New Theory of Synapse Formation in the Brain

Jülich neuroinformatician Dr. Markus Butz has now been able to ascribe the formation of new neural networks in the visual cortex to a simple homeostatic rule that is also the basis of many other self-regulating processes in nature. With this explanation, he and his colleague Dr. Arjen van Ooyen from Amsterdam also provide a new theory on the plasticity of the brain – and a novel approach to understanding learning processes and treating brain injuries and diseases.