Scripps Florida Scientists Pinpoint How Genetic Mutation Causes Early Brain Damage

In humans, mutations in Syngap1 are known to cause devastating forms of intellectual disability and epilepsy. In the study, Rumbaugh and his colleagues used a mouse model to show that mutations in Syngap1 damage the development of a kind of neuron known as glutamatergic neurons in the young forebrain, leading to intellectual disability. Higher cognitive processes, such as language, reasoning and memory arise in children as the forebrain develops. Repairing damaging Syngap1 mutations in these specific neurons during development prevented cognitive abnormalities, while repairing the gene in other kinds of neurons and in other locations had no effect.

International study yields important clues to the genetics of epilepsy

An international team of researchers has discovered a significant genetic component of Idiopathic Generalized Epilepsy (IGE), the most common form of epilepsy. Epilepsy is a neurological disorder characterized by sudden, uncontrolled electrical discharges in the brain expressed as a seizure. The new research implicates a mutation in the gene for a protein, known as cotransporter KCC2. KCC2 maintains the correct levels of chloride ions in neurons, playing a major part in regulating excitation and inhibition of neurons. The results indicate that a genetic mutation of KCC2 might be a risk factor for developing IGE.

Breakthrough study sheds new light on best medication for children with seizures

A recently published clinical study in the Journal of the American Medical Association has answered an urgent question that long puzzled ER pediatricians: Is the drug lorazepam really safer and more effective than diazepam – the U.S. Food and Drug Administration-approved medication as first line therapy most often used by emergency room doctors to control major epileptic seizures in children? The answer to that question – based on a double-blind, randomized clinical trial that compared outcomes in 273 seizure patients, about half of whom were given lorazepam – is a clear-cut “no,” said Prashant V. Mahajan, M.D., M.P.H., M.B.A, one of the authors of the study. “The results of our clinical trial were very convincing, and they showed clearly that the two medications are just about equally effective and equally safe when it comes to treating status epilepticus [major epileptic brain seizures in children],” Dr. Mahajan said. “This is an important step forward for all of us who frequently treat kids in the ER for [epilepsy-related] seizures, since it answers the question about the best medication to use in ending the convulsions and getting these patients back to normal brain functioning.”

University of Toronto biologists pave the way for improved epilepsy treatments

Three key proteins – KCC2, Neto2 and GluK2 – required for inhibitory and excitatory synaptic communication. KCC2 is required for inhibitory impulses, GluK2 is a receptor for the main excitatory transmitter glutamate, and Neto2 is an auxiliary protein that interacts with both KCC2 and GluK2. The discovery of the complex of three proteins is pathbreaking as it was previously believed that KCC2 and GluK2 were in separate compartments of the cell and acted independently of each other.

Neural Transplant Reduces Absence Epilepsy Seizures in Mice

New research from North Carolina State University pinpoints the areas of the cerebral cortex that are affected in mice with absence epilepsy and shows that transplanting embryonic neural cells into these areas can alleviate symptoms of the disease by reducing seizure activity. The work may help identify the areas of the human brain affected in absence epilepsy and lead to new therapies for sufferers.

Young people with epilepsy significantly more at risk of injury

The authors say that doctors and other healthcare professionals can use the findings of the research to make children and young adults diagnosed with epilepsy, and their parents, more aware of the risk of injury and to inform existing guidelines on treatment. In particular, they cite the need for more information relating to the safe storage of medicines and the supervision of children while taking their medication to be given by doctors at the time of prescribing and by pharmacists when dispensing prescriptions.

Critical role of one gene to our brain development

By looking at patients with severe learning and memory problems, we discovered a gene - called USP9X - that is involved in creating this base network of nerve cells. USP9X controls both the initial generation of the nerve cells from stem cells, and also their ability to connect with one another and form the proper networks.