Analysis of 26 networked autism genes suggests functional role in the cerebellum

A team of scientists has obtained intriguing insights into two groups of autism candidate genes in the mammalian brain that new evidence suggests are functionally and spatially related. The newly published analysis identifies two networked groupings from 26 genes associated with autism that are overexpressed in the cerebellar cortex, in areas dominated by neurons called granule cells.

Autism Speaks collaborative releases first full genome sequencing for autism

A collaborative formed by Autism Speaks, the worlds leading autism science and advocacy organization, has found full genome sequencing examining the entire DNA code of individuals with autism spectrum disorder (ASD) and their family members to provide the definitive look at the wide ranging genetic variations associated with ASD.

Excessive cerebral spinal fluid, enlarged brain size in infancy are potential biomarkers for autism

Children who were later diagnosed with autism spectrum disorder had excessive cerebrospinal fluid and enlarged brains in infancy, a study by a multidisciplinary team of researchers with the UC Davis MIND Institute has found, raising the possibility that those brain anomalies may serve as potential biomarkers for the early identification of the neurodevelopmental disorder.



Gene deletion affects early language and brain white matter

A chromosomal deletion is associated with changes in the brain's white matter and delayed language acquisition in youngsters from Southeast Asia or with ancestral connections to the region, said an international consortium led by researchers at Baylor College of Medicine. However, many such children who can be described as late-talkers may overcome early speech and language difficulties as they grow.

A look inside children's minds

The research is important, because visual working memory performance has been linked to a variety of childhood disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, developmental coordination disorder as well as affecting children born prematurely. The goal is to use the new brain imaging technique to detect these disorders before they manifest themselves in childrens behavior later on.

Autism risk spotted at birth in abnormal placentas

Researchers at the Yale School of Medicine have figured out how to measure an infant's risk of developing autism by looking for abnormalities in his/her placenta at birth, allowing for earlier diagnosis and treatment for the developmental disorder. The findings are reported in the April 25 online issue of Biological Psychiatry.